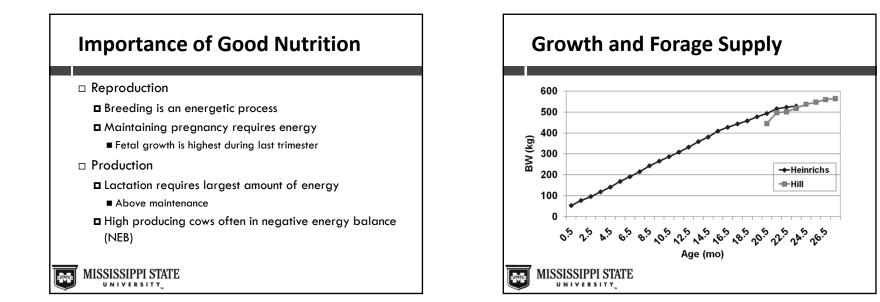
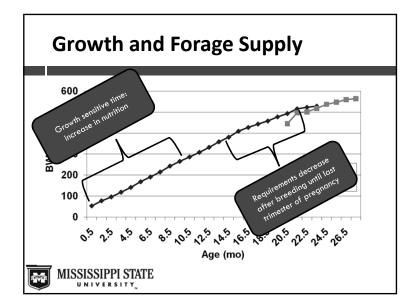


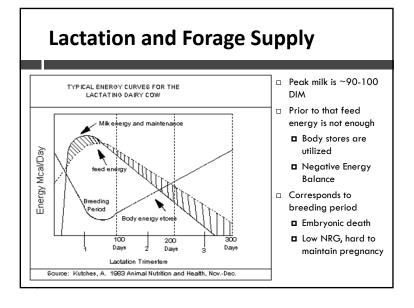
Outline Importance of Good Nutrition Timing of Nutrient Supply Growth and forage supply Lactation and forage supply Forage Planning Monitoring Forages and Animal Response Supplementation

Importance of Good Nutrition

- □ Nutrients are required for:
 - Maintenance
 - **□** Growth
 - Production/Reproduction
- Maintenance requirements vary for confinement vs. grazing animals
 - 20% increase in energy requirement for grazing
 - Must meet these requirements first!

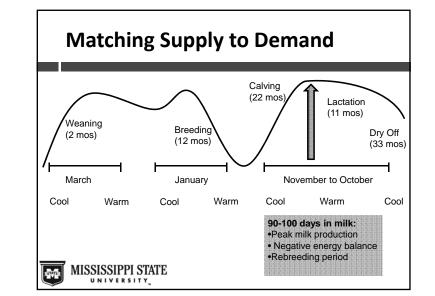

MISSISSIPPI STATE


Importance of Good Nutrition


\Box Growth

- After maintenance is met extra energy can be used for growth or production
- Growth may be seasonal or year round
- Important to target highest forage yields when you desire highest ADG
- Supplementation necessary for year round
- Target specific ages for most growth
 - i.e. pre-weaning, pre-puberty, post-1st lactation

MISSISSIPPI STATE


Lactation and Forage Supply

- □ Very sensitive time for dairy cow
 - Exponential increase in metabolic disorders
 Milk fever, displaced abomasum, ketosis, etc.
- Forage availability must be high when cows hit this point

Grain supplement can alleviate some stress but not all!

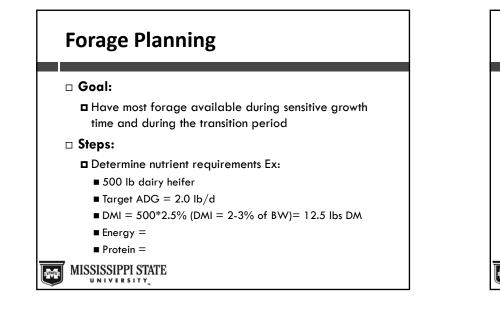
Match top forage growth with peak milk
 90-100 DIM is typical but know your herd!

MISSISSIPPI STATE

Forage Planning

□ Goal:

Have most forage available during sensitive growth time and during the transition period


□ Steps:

Make a forage plan:

- Winter grasses, Summer grasses
- Stockpiling forages
- Supplementing when forage unavailable

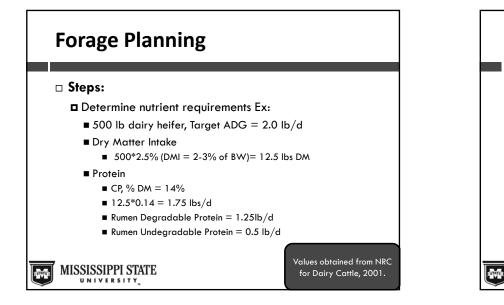
Adjust breeding season to match your forage plan

MISSISSIPPI STATE

Steps:

Determine nutrient requirements Ex:

■ 500 lb dairy heifer, Target ADG = 2.0 lb/d

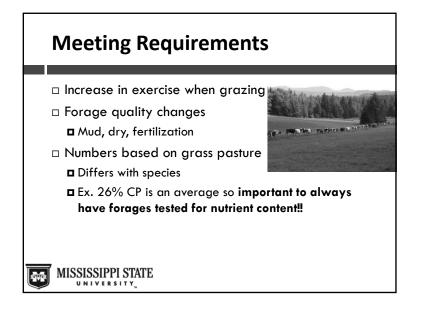

- Dry Matter Intake
 - 500*2.5% (DMI = 2-3% of BW)= 12.5 lbs DM

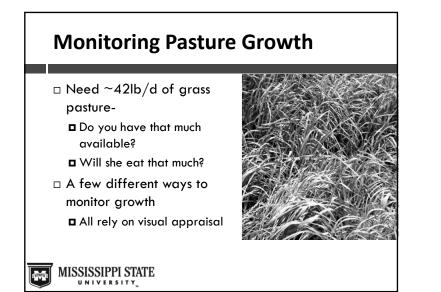
Energy

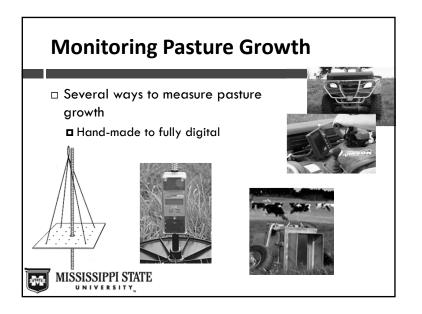
- TDN = 65%
- NE_{maintenance} = 5.24 Mcal/d
- NE_{agin}= 2.36 Mcal/d
- Total Energy = 7.60 Mcal/d

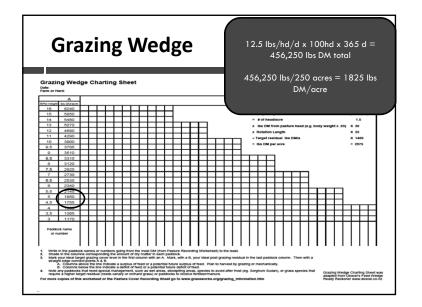
MISSISSIPPI STATE

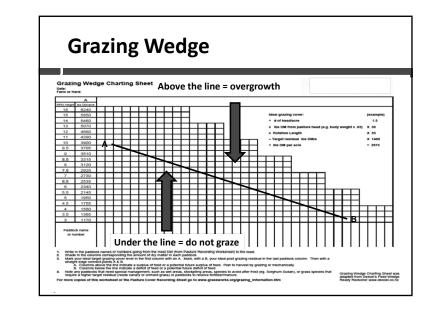
Values obtained from NRC for Dairy Cattle, 2001.

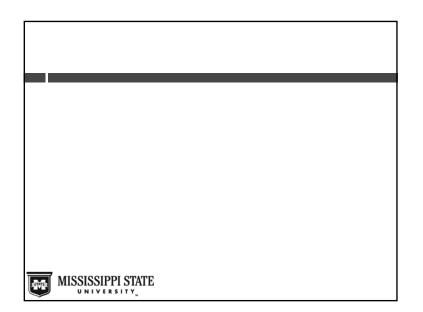





- 30% DM
- 1.24 Mcal/lb (NEg+m)
- 66% TDN
- 26.5% CP
- Can we meet her requirements?


MISSISSIPPI STATE


Math!							
Cow Requirer	Cow Requirement		Balance				
DMI, Ibs/d	12.5	20% DM	12.5/0.30 = 41.7 lbs 'as-fed'				
Energy, Mcal/d	7.60	1.24 Mcal/lb	12.5*1.25 = 15.5 Mcal/d				
CP, lb/d	1.75	26.5% CP	12.5*0.265 = 3.3 lb/d				
MISSISSIPPI ST	 Over on energy and protein Negative impacts? Remember difference in grazing and confinement animals Increase energy by up to 20% 						



Supplementing Feed

Several different methods

- TMR in parlor during milking
- TMR in barn at night
- Grain mixes

By-product feeding

- □ Amount is critical
 - $\Box > 15$ lbs/d will decrease grazing

MISSISSIPPI STATE

Supplement Rations

- Important to have starch in the diet (~60-70%)
 Starch = volatile fatty acids = ENERGY
 Grass/Forage = NDF= Milk Fat/Energy
- Protein in some grasses and legumes can have reduced digestibility

May consider a higher protein feed

■ Bypass protein – consider expense

MISSISSIPPI STATE

Supplement Rations

Ingredient	Spring	Spring Ration Cool Season Grass		Summer Ration Warm Season Grass		Winter Ration High Quality Alfalfa	
	Cool Seas						
	lbs/ton	%	lbs/ton	%	lbs/ton	%	
Corn	1,395	69.8	1,445	72.3	810	40.5	
Soy hull pellets	440	22.0	0	0.0	500	25.0	
Wet molasses	50	2.5	50	2.5	50	2.5	
SB meal (47.5%)	0	0.0	130	6.5	125	6.3	
Distillers Grains (Dried)	0	0.0	130	6.5	0	0.0	
Corn gluten feed	0	0.0	130	6.5	435	21.8	
Tallow	50	2.5	50	2.5	50	2.5	
Limestone	35	1.8	35	1.8	0	0.0	
Trace mineral salt	20	1.0	20	1.0	20	1.0	
Di-cal phosphate	0	0.0	0	0.0	10	0.5	
<u>Magne</u> sium oxide	10	0.5	10	0.5	0	0.0	
MISSISSIPPI STATE					Extensio		

Case Study- Buck Shand

- □ 1,650 acres- 200 acres for dairy
 □ Dallas, Alabama
- □ 100 cows, 14,000-15,000 lb/cow/yr
- Transitioned from confinement to grazing in early 90s

■ Saw a change in feed prices and milk prices coming

Case Study- Buck Shand

- 4 pastures subdivided by permanent and portable electric fencing
- Water is provided for each pasture. Laneways have drainage tile to keep them from becoming muddy
- Pastures are rotated daily. Each pasture is rested for 30 to 45 days after being grazed
- □ In the spring when grazing cannot keep up with the lush growth, pastures are mechanically harvested and saved for use later when dry matter is low
- □ The primary forage crops on the dairy are dallisgrass, white
 - clover, Persian clover, and several hardy *fescue* varieties with beneficial endophytes.

MISSISSIPPI STATE UNIVERSITY

UNIVERSITY

12April's Dairy and Happy Cow Creamerv

- □ 97 acres, 25 paddocks (~2-3 acres/paddock)
- □ 19,600 lb/cow/yr
- □ Uses irrigation on 16 paddocks
- □ Geotextile cloth to reduce mud/erosion
- Forage program
 - Grazing maize
 - Trudan
 - Millet
 - Alfalfa

Clover MISSISSIPPI STATE UNIVERSITY

12Aprils' – Tom Trantham

Case Study- Buck Shand

□ Keeping cows out of mud- reduce mastitis and

□ Biggest challenges

MISSISSIPPI STATE

other health problems

WEEDS

- □ Cows transitioned themselves
 - Award winning herd, not paying the bills
 - Broke through fencing and grazed
 - Resulted in 2lb/cow increase in milk
- □ One paddock for each day of the month so each month is like April
- □ 12April's Cows. . .

MISSISSIPPI STATE UNIVERSITY

Opportunity for research □ If you're interested in □ Collaborate with grazing or making the Mississippi State

- □ Producer grants through Southern SARE **u** \$20-\$50,000 and \$250,000
- □ Funding to explore
- different parts of the system
 - Fencing/watering supplies
 - Animal monitoring
 - Different forages

MISSISSIPPI STATE

transition

Milking Facilities United States □ Individual stalls □ Large capital investment □ Center of dairy operation □ Do you have to redo your parlor?? MISSISSIPPI STATE UNIVERSITY

Milking Facilities □ Swing parlors New Zealand □ Covered shed Style □ Supplement in parlor □ No pre-dip MISSISSIPPI STATE

Milking Facilities

□ No!

- □ Grazing is most profitable as a start up operation
- □ Build low cost facilities
- □ What if you already have large investments in your milking facility?
- □ Not likely that switching to grazing will cover that cost

