
An Approach to Explaining 
Confidence Intervals When 
Estimating Average Values

During natural resource inventories, we often estimate 
average values such as average basal area per acre, average 
volume per acre, or average tons per acre. An estimate 
of the average value provides valuable information, 
but we also want to have some idea of the uncertainty 
associated with that estimate. How much “confidence” 
can we place in the estimate? If you have little confidence 
in your estimate, are you willing to use $300,000 of your 
own money to buy a tract of timber? What would make 
you feel comfortable enough to justify the expenditure of 
$300,000? We want to measure enough of the population 
so that we can make an informed decision based on 
sample data for the problem we are trying to solve. We don’t 
want to measure more of the population than is needed. If we do 
measure more than is needed, we will have wasted resources and 
time. Of course, the amount of the population deemed enough to 
make an informed decision will likely vary among foresters; some 
will feel more comfortable than others with a smaller sample of 
the population.

A stand is a collection of trees managed together as a unit. We 
hardly ever measure an entire population—every tree in the 
stand—in a loblolly pine plantation, bottomland hardwood 
forest, or mixed pine-hardwood forest. We often measure a 
reduced portion of all trees in the stand; stated differently, we 
conduct a sample of a stand. Due to time, logistics, and costs, 
we can’t measure every tree. Therefore, we have uncertainty 
associated with our estimate of the true average tons per acre 
because we only have partial knowledge about our stand. 

Inventories often are conducted using fixed-radius plots or point 
sampling (variable-radius plot sampling). Average values per 
acre are simply the average of all the plot or point estimates. For 
a particular sample size and protocol, there are many different 
ways in which plots/points of that “cruise” could be established 
spatially. Each different spatial layout of the plots will likely 
produce a different estimate of the true average tons per acre. 
This is sampling error, or variability, in our average estimates 
because we are measuring only a portion of the trees in our 
stand, leading to uncertainty about our individual average 
estimate obtained during an actual operational inventory. In 

other words, we are making direct measurements (the sample) 
on only a reduced portion of the population.

How many different ways can five fixed-radius circular plots be 
established without overlap in the stand pictured above? There 
are probably more than 100,000 ways. For all of the potential 
spatial layouts, the average value of the five plots would produce 
a valid estimate of, say, the true average basal area per acre or 
average tons per acre. Notice in the three layouts that you are 
measuring different reduced portions of the population (or 
stand), so the average estimates are going to differ among the 
three layouts. This is sampling error, or that difference between 
an estimate and the true value arising from measuring a reduced 
portion of the stand. We have only partial information about our 
population (or trees in the stand). 

In practice, a forester would lay out the five plots only once. Of 
course, there would be uncertainty associated with the average 
estimate. The amount of inherent variability is fixed at the time 
of sampling. We cannot move the trees to change the variability. 
Therefore, the only way to increase our confidence would be to 
enlarge the plots or establish more plots—measure more of the 
stand (or population). 

If we measured every tree in our stand, sampling error would be 
eliminated because we now have full information about the true 
value from a sampling perspective. However, measurement error 
may still exist. Examples of measurement error are underestimating 
the true height or diameter of a tree, incorrect mathematical 
calculations, using an inappropriate volume equation, etc. We 
can use sampling theory to address the uncertainty associated 

Five fixed-radius circular plots in the same stand, arranged in three spatial 
layouts, are likely to have different average estimated values.



For each of the four situations, how confident are you that the 
true average basal area per acre equals 61 square feet? Your 
confidence should be a function of the sample size and the 
amount of variability among the plot estimates. Let’s look at each 
situation.

For Situation One, we have only measured two plots. However, 
both plot estimates are very close to each other. Based on 
probability, what is the chance that an additional plot would also 
be near 61 square feet? A third plot could actually produce an 
estimate of, say, 20 square feet, but given the low variability in 
the first two plots, you would not expect this much difference. 
Consequently, based on the sample size, you probably wouldn’t 
put much confidence in your average per acre estimate, but based 
on the low amount of variability between the two plots, you could 
have some degree of confidence. Of course, a larger sample size 
with a continued amount of low variability (or high precision) in 
plot estimates would make you feel even more confident.

For Situation Two, we have measured 12 plots, and all of them 
are extremely close to each other. Based on probability, what is 
the chance that an additional plot would also be near 61 square 
feet? The 13th plot could produce an estimate of, say, 120 square 
feet. But given the low variability among the initial 12 plots and 
high sample size, you would not expect this much difference. In 
this situation, you can have a relatively high degree of confidence 
because of your sample size, as well as the low amount of 
variability.

For Situation Three, we have measured only two plots that 
unfortunately differ substantially. Based on these two plots, I have 
no idea whether the next value will be close to 61 square feet or 
not. To have a great amount of confidence in my average basal 
area per acre estimate, I will likely need to establish and measure 
a large number of plots.

For Situation Four, we have measured 12 plots, but there is 
substantial variability in the plot estimates. Values range from 20 
to 105 square feet; I have little confidence as to the value of the 
next plot measured. It may even be 0 or perhaps greater than 105. 
To be comfortable with my estimated average value per acre, I 
will most likely need to establish and measure many more plots.

If you have low inherent variability among your plots/points (a 
small standard deviation), measuring one plot/point is essentially 
the same as measuring another plot/point. Hence, if one plot/
point is essentially the same as every other plot/point, how many 
plots/points do you need to measure before you obtain a good 
estimate of the average plot/point behavior?

with sampling error, but addressing uncertainty in our estimates 
associated with measurement error is very difficult. In many ways, it 
can be nearly impossible. The traditional use of confidence intervals 
only addresses uncertainty associated with sampling error. 

Uncertainty associated with an estimate of an average value, as 
well as our willingness to accept such error, should be a function 
of sample size, the amount of inherent variability in our stand 
(or population), and the amount of the population we deem 
necessary to make an informed decision about the problem we 
are trying to solve. We choose sample size; do we want to install 
12 prism points, or do we feel the need to install 45 prism points 
to produce an estimate we are comfortable with? We can’t control 
the inherent variability in our population given a particular 
sampling scheme. 

The variability among plot/point estimates and tree volumes, 
etc., is fixed at the time of sampling. It is what it is, and we can’t 
manually move trees to reduce the variability. For those of you 
who are more familiar with statistics, there are techniques, such 
as stratification, that can reduce the inherent variability, but 
we are assuming that we have already defined our population. 
Here is an example of the need for stratification: Say you are 
conducting an inventory of a tract containing a mixed-hardwood 
bottomland stand and a 15-year-old loblolly pine plantation. 
Obviously, the amount of inherent variability in the tract is going 
to be huge. However, you could stratify each stand and conduct 
a separate cruise in each stand. By stratifying the two stands, 
and conducting a separate cruise in each stand, you have greatly 
reduced the amount of inherent variability. 

Assume the following values are basal area per acre estimates 
using 1/10-acre plots. In all cases, the estimated average basal area 
per acre is 61 square feet. 

Situation One: Two 1/10-acre plots, low inherent variability
59 and 63 square feet = average of 61 square feet

Situation Two: 12  1/10-acre plots, low inherent variability
61, 62, 62, 62, 61, 58, 62, 61, 62, 61, 61, 59 square feet = average of 
61 square feet

Situation Three: Two 1/10-acre plots, high inherent variability
40 and 82 square feet = average of 61 square feet

Situation Four: 12  1/10-acre plots, high inherent variability
20, 32, 82, 57, 20, 78, 42, 105, 82, 91, 100, 23 square feet = average 
of 61 square feet
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of the average value, as well as the estimate of the standard 
deviation. You select your degree of confidence. The t-value 
is in the numerator, where a theoretical value of 1 is in the 
denominator:

 

As the t-value increases, so does the width/size of the confidence 
interval. 

Notice, though, that sample size in a sense has two impacts: one 
directly on the standard error of the mean and the second on 
the t-value. As your sample size increases, the t-value becomes 
smaller, eventually approaching the z-value corresponding to 
your desired level of confidence.

Statements of Probability Concerning 
Confidence Intervals
Remember that there is no probability associated with the true 
average value (or the parameter). The true average basal area or 
true average tons per acre is fixed at a particular time. It doesn’t 
change given your sample size, sampling protocol, etc. If I 
conduct an inventory of a stand, and another person conducts an 
inventory of the same stand, the true average value is the same. 
What will change between these inventories are our estimates of 
that true value, the sample standard deviation, and our calculated 
confidence intervals. Once again, because we will be measuring 
a different reduced portion of the population (or stand), that 
will lead to different estimates. For the three spatial layouts of 
five plots depicted in the pictured stand, is the true average value 
different between the three spatial layouts? No, the same stand 
is being sampled, but what is different among the three spatial 
layouts is the reduced portion of the stand that is being measured. 
Consequently, what does differ is the estimated average value and 
other associated sample statistics. 

To say there is a 95 percent chance that the true average basal 
area is within some interval is technically incorrect. Notice you 
are putting the probability on the true value, whether I use a 
sample size of 12 plots or 50 plots, the true average value is the 
same. The change occurs in the confidence intervals. Therefore, 
the probability should be placed on the confidence interval, not 
the true average value.

It would be correct to say something similar to “There is a 95 
percent chance that this confidence interval contains the true 
average value.” Notice, you are putting the probability on the 
interval (a statistic), not the true average value (a parameter).

These four situations are addressed in the confidence interval 
formula commonly applied during natural resource inventories. 
This is a common equation expression for infinite populations. 
The explanation also applies for those cases where the finite 
population correction factor is included. 

Below is the commonly applied confidence interval:

 

Where:

= confidence interval,

 = sample mean, or estimate of say average basal 
area per acre or average volume per acre,

 = t-value assuming two-tails corresponding to 
a particular degrees of freedom [sample size (n) 
minus one] and desired level of confidence (80 
percent, 90 percent, 95 percent, etc.),

  = sample standard deviation, or an estimated 
measure of the inherent variability in the stand (or 
population), which is fixed and depends on the 
forest,

 = sample size used during an inventory, as 
selected by the user, and

 = standard error of the mean.

Notice a few things in the equation. The inventory sample size (n) 
is in the denominator. Based on sampling theory, this equation 
has built into it that, as sample size increases, the interval around 
your estimate, which likely contains the true average value, will 
decrease. Thus you can have more confidence in your estimate. 
This makes sense. Once again, you choose sample size.

The amount of inherent variability, or the variability among 
your plot/point estimates, is in the numerator represented by the 
standard deviation (s). As your standard deviation increases, for 
the same sample size, you should have less confidence in your 
estimate, which makes sense. Once again, the amount of inherent 
variability is fixed; it cannot be changed. 

Finally, the t-value is a function of sample size (n) and your 
desired level of confidence. Do you want to be 80 percent, 
90 percent, or 95 percent confident? As your desired level of 
confidence increases, the t-value will need to be larger to better 
account for all the uncertainty associated with your estimate 
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