
An Approach to Explaining 
Confidence Intervals When 
Estimating Average Values

During natural resource inventories, we often estimate 
average values such as average basal area per acre, average 
volume per acre, or average tons per acre. An estimate of 
the average value provides valuable information, but we 
also want to have some idea of the uncertainty associated 
with that estimate. How much “confidence” can we place in 
the estimate? If you have little confidence in your estimate, 
are you willing to use $300,000 of your own money to buy 
a tract of timber? What would make you feel comfortable 
enough to justify the expenditure of $300,000? We want to 
measure enough of the population so that we can make an 
informed decision based on sample data for the problem we 
are trying to solve. We don’t want to measure more of the 
population than is needed. If we do measure more than is 
needed, we will have wasted resources and time. Of course, 
the amount of the population deemed enough to make an 
informed decision will likely vary among foresters; some will 
feel more comfortable than others with a smaller sample of 
the population.

A stand is a collection of trees managed together as a unit. 
We hardly ever measure an entire population—every tree 
in the stand—in a loblolly pine plantation, bottomland 
hardwood forest, or mixed pine-hardwood forest. We often 
measure a reduced portion of all trees in the stand; stated 
differently, we conduct a sample of a stand. Due to time, 
logistics, and costs, we can’t measure every tree. Therefore, 
we have uncertainty associated with our estimate of the 
true average tons per acre because we only have partial 
knowledge about our stand. 

Inventories often are conducted using fixed-radius plots 
or point sampling (variable-radius plot sampling). Average 
values per acre are simply the average of all the plot or point 
estimates. For a particular sample size and protocol, there 
are many different ways in which plots/points of that cruise 
could be established spatially. Each different spatial layout of 
the plots will likely produce a different estimate of the true 
average tons per acre. This is sampling error, or variability, 
in our average estimates because we are measuring only a 
portion of the trees in our stand, leading to uncertainty about 
our individual average estimate obtained during an actual 
operational inventory. In other words, we are making direct 
measurements (the sample) on only a reduced portion of 
the population.

How many different ways can five fixed-radius circular plots 
be established without overlap in the stand pictured above? 
There are probably more than 100,000 ways. For all of the 
potential spatial layouts, the average value of the five plots 
would produce a valid estimate of, say, the true average basal 
area per acre or average tons per acre. Notice in the three 
layouts that you are measuring different reduced portions of 
the population (or stand), so the average estimates are going 
to differ among the three layouts. This is sampling error, or 
that difference between an estimate and the true value 
arising from measuring a reduced portion of the stand. We 
have only partial information about our population (or trees 
in the stand). 

In practice, a forester would lay out the five plots only once. 
Of course, there would be uncertainty associated with the 
average estimate. The amount of inherent variability is 
fixed at the time of sampling. We cannot move the trees to 
change the variability. Therefore, the only way to increase our 
confidence would be to enlarge the plots or establish more 
plots—measure more of the stand (or population). 

If we measured every tree in our stand, sampling error 
would be eliminated because we now have full information 
about the true value from a sampling perspective. However, 
measurement error may still exist. Examples of measurement 
error are underestimating the true height or diameter 
of a tree, incorrect mathematical calculations, using an 
inappropriate volume equation, etc. We can use sampling 
theory to address the uncertainty associated with sampling 
error, but addressing uncertainty in our estimates associated 
with measurement error is very difficult. In many ways, it 
can be nearly impossible. The traditional use of confidence 

Five fixed-radius circular plots in the same stand, arranged 
in three spatial layouts, are likely to have different average 
estimated values.
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intervals only addresses uncertainty associated with 
sampling error. 

Uncertainty associated with an estimate of an average value, 
as well as our willingness to accept such error, should be a 
function of sample size, the amount of inherent variability in 
our stand (or population), and the amount of the population 
we deem necessary to make an informed decision about 
the problem we are trying to solve. We choose sample size; 
do we want to install 12 prism points, or do we feel the need 
to install 45 prism points to produce an estimate we are 
comfortable with? We can’t control the inherent variability in 
our population given a particular sampling scheme. 

The variability among plot/point estimates and tree volumes, 
etc., is fixed at the time of sampling. It is what it is, and we 
can’t manually move trees to reduce the variability. For 
those of you who are more familiar with statistics, there 
are techniques, such as stratification, that can reduce the 
inherent variability, but we are assuming that we have 
already defined our population. Here is an example of the 
need for stratification: Say you are conducting an inventory 
of a tract containing a mixed-hardwood bottomland stand 
and a 15-year-old loblolly pine plantation. Obviously, the 
amount of inherent variability in the tract is going to be 
huge. However, you could stratify each stand and conduct a 
separate cruise in each stand. By stratifying the two stands, 
and conducting a separate cruise in each stand, you have 
greatly reduced the amount of inherent variability. 

Assume the following values are basal area per acre estimates 
using 1/10-acre plots. In all cases, the estimated average basal 
area per acre is 61 square feet. 

Situation One: Two 1/10-acre plots, low inherent variability
59 and 63 square feet = average of 61 square feet

Situation Two: 12 1/10-acre plots, low inherent variability
61, 62, 62, 62, 61, 58, 62, 61, 62, 61, 61, 59 square feet = 
average of 61 square feet

Situation Three: Two 1/10-acre plots, high inherent variability
40 and 82 square feet = average of 61 square feet

Situation Four: 12 1/10-acre plots, high inherent variability
20, 32, 82, 57, 20, 78, 42, 105, 82, 91, 100, 23 square feet = 
average of 61 square feet

For each of the four situations, how confident are you that 
the true average basal area per acre equals 61 square feet? 
Your confidence should be a function of the sample size and 
the amount of variability among the plot estimates. Let’s look 
at each situation.

For Situation One, we have only measured two plots. 
However, both plot estimates are very close to each other. 
Based on probability, what is the chance that an additional 
plot would also be near 61 square feet? A third plot could 
actually produce an estimate of, say, 20 square feet, but given 
the low variability in the first two plots, you would not expect 
this much difference. Consequently, based on the sample size, 
you probably wouldn’t put much confidence in your average 
per acre estimate, but based on the low amount of variability 
between the two plots, you could have some degree of 
confidence. Of course, a larger sample size with a continued 
amount of low variability (or high precision) in plot estimates 
would make you feel even more confident.

For Situation Two, we have measured 12 plots, and all of them 
are extremely close to each other. Based on probability, what 
is the chance that an additional plot would also be near 61 
square feet? The 13th plot could produce an estimate of, say, 
120 square feet. But given the low variability among the initial 
12 plots and high sample size, you would not expect this 
much difference. In this situation, you can have a relatively 
high degree of confidence because of your sample size, as 
well as the low amount of variability.

For Situation Three, we have measured only two plots that 
unfortunately differ substantially. Based on these two plots, 
I have no idea whether the next value will be close to 61 
square feet or not. To have a great amount of confidence in 
my average basal area per acre estimate, I will likely need to 
establish and measure a large number of plots.

For Situation Four, we have measured 12 plots, but there is 
substantial variability in the plot estimates. Values range from 
20 to 105 square feet. I have little confidence as to the value of 
the next plot measured. It may even be 0 or perhaps greater 
than 105. To be comfortable with my estimated average value 
per acre, I will most likely need to establish and measure 
many more plots.

If you have low inherent variability among your plots/points 
(a small standard deviation), measuring one plot/point is 
essentially the same as measuring another plot/point. Hence, 
if one plot/point is essentially the same as every other plot/
point, how many plots/points do you need to measure 
before you obtain a good estimate of the average plot/
point behavior?

These four situations are addressed in the confidence 
interval formula commonly applied during natural resource 
inventories. This is a common equation expression for infinite 
populations. The explanation also applies for those cases 
where the finite population correction factor is included. 
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Below is the commonly applied confidence interval:

Where:

 = confidence interval

 = �sample mean, or estimate of say average basal area per 
acre or average volume per acre,

 = �t-value assuming two-tails corresponding to a 
particular degrees of freedom [sample size (n) 
minus one] and desired level of confidence (80 
percent, 90 percent, 95 percent, etc.),

 = �sample standard deviation, or an estimated measure 
of the inherent variability in the stand (or population), 
which is fixed and depends on the forest,

 = �sample size used during an inventory, as selected 
by the user, and

 = standard error of the mean.

Notice a few things in the equation. The inventory sample 
size (n) is in the denominator. Based on sampling theory, 
this equation has built into it that, as sample size increases, 
the interval around your estimate, which likely contains the 
true average value, will decrease. Thus you can have more 
confidence in your estimate. This makes sense. Once again, 
you choose sample size.

The amount of inherent variability, or the variability among 
your plot/point estimates, is in the numerator represented 
by the standard deviation (s). As your standard deviation 
increases, for the same sample size, you should have 
less confidence in your estimate, which makes sense. 
Once again, the amount of inherent variability is fixed; it 
cannot be changed. 

Finally, the t-value is a function of sample size (n) and your 
desired level of confidence. Do you want to be 80 percent, 
90 percent, or 95 percent confident? As your desired level of 
confidence increases, the t-value will need to be larger to 
better account for all the uncertainty associated with your 
estimate of the average value, as well as the estimate of the 

standard deviation. You select your degree of confidence. The 
t-value is in the numerator, where a theoretical value of 1 is in 
the denominator:

As the t-value increases, so does the width/size of the 
confidence interval. 

Notice, though, that sample size in a sense has two impacts: 
one directly on the standard error of the mean and the 
second on the t-value. As your sample size increases, the 
t-value becomes smaller, eventually approaching the z-value 
corresponding to your desired level of confidence.

Statements of Probability 
Concerning Confidence Intervals
Remember that there is no probability associated with the 
true average value (or the parameter). The true average basal 
area or true average tons per acre is fixed at a particular 
time. It doesn’t change given your sample size, sampling 
protocol, etc. If I conduct an inventory of a stand, and 
another person conducts an inventory of the same stand, the 
true average value is the same. What will change between 
these inventories are our estimates of that true value, the 
sample standard deviation, and our calculated confidence 
intervals. Once again, because we will be measuring a 
different reduced portion of the population (or stand), that 
will lead to different estimates. For the three spatial layouts 
of five plots depicted in the pictured stand, is the true 
average value different between the three spatial layouts? 
No, the same stand is being sampled, but what is different 
among the three spatial layouts is the reduced portion of 
the stand that is being measured. Consequently, what does 
differ is the estimated average value and other associated 
sample statistics. 

To say there is a 95 percent chance that the true average basal 
area is within some interval is technically incorrect. Notice 
you are putting the probability on the true value, whether 
I use a sample size of 12 plots or 50 plots, the true average 
value is the same. The change occurs in the confidence 
intervals. Therefore, the probability should be placed on the 
confidence interval, not the true average value.

It would be correct to say something similar to “There is a 95 
percent chance that this confidence interval contains the true 
average value.” Notice, you are putting the probability on the 
interval (a statistic), not the true average value (a parameter).
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